(1) 第一问题或者具有平衡分岔的稳定问题(也叫分支点失稳)。完善直杆轴心受压时的屈曲和完善平板中面受压时的屈曲都属于这一类。
(2) 第二问题或无平衡分岔的稳定问题(也叫极值点失稳)。由建筑钢材做成的偏心受压构件,在塑性发展到一定程度时丧失稳定的能力,属于这一类。
(3) 跃越失稳是一种不同于以上两种类型,它既无平衡分岔点,又无极值点,它是在丧失稳定平衡之后跳跃到另一个稳定平衡状态。
区分结构失稳类型的性质十分重要,这样才有可能正确估量结构的稳定承载力。随着稳定问题研究的逐步深入,上述分类看起来已经不够了。设计为轴心受压的构件,实际上总不免有一点初弯曲,荷载的作用点也难免有偏心。因此,我们要真正掌握这种构件的性能,就必须了解缺陷对它的影响,其他构件也都有个缺陷影响问题。另一方面就是深入对构件屈曲后性能的研究。
强度问题是指钢结构或者单个构件在稳定平衡状态下由荷载所引起地最大应力(或内力)是否超过建筑材料的极限强度,因此是一个应力问题。极限强度的取值取决于材料的特性,对混凝土等脆性材料,可取它的最大强度,对钢材则常取它的屈服点。
稳定问题则与强度问题不同,它主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。如轴压柱,由于失稳,侧向挠度使柱中增加数量很大的弯矩,因而柱子的破坏荷载可以远远低于它的轴压强度。显然,轴压强度不是柱子破坏的主要原因。